US009244816B2

a2 United States Patent

Adamson

US 9,244,816 B2
*Jan. 26,2016

(10) Patent No.:
(45) Date of Patent:

(54) APPLICATION TESTING USING SANDBOXES

(71) Applicant: Alcatel Lucent, Boulogne Billancourt
(FR)

(72) Kevin S. Adamson, Buckinghamshire

(GB)

Inventor:

(73) Alcatel Lucent, Boulogne-Billancourt

(FR)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.
2D 14/450,992

(22)

Appl. No.:

Filed: Aug. 4, 2014

(65) Prior Publication Data

US 2014/0344786 Al Now. 20, 2014

Related U.S. Application Data

Continuation of application No. 13/167,834, filed on
Jun. 24, 2011, now Pat. No. 8,799,862.

(63)

Int. Cl1.
GO6F 9/44
GO6F 11736
HO4L 29/08
GO6F 9/455
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
............ GOG6F 11/3664 (2013.01); HO4L 67/14
(2013.01); GO6F 9/455 (2013.01)
Field of Classification Search
... GOG6F 11/3664
717/102-109, 124-135, 174-178,;

(58)

709/203-206, 217-245
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,651,111 A * 7/1997 McKeeman et al. 714/38.1
6,473,794 B1* 10/2002 Guheenetal. 709/223
7,685,593 B2 3/2010 Solomon et al.
7,941,813 Bl 5/2011 Protassov et al.
8,533,531 B2* 9/2013 ElMahdyetal. 714/28
8,737,980 B2* 5/2014 Doshietal.cco....... 455/418
(Continued)
OTHER PUBLICATIONS

Watanabe, T.; Zixue Cheng; Kansen, M.; Hisada, M., “A New Secu-
rity Testing Method for Detecting Flash Vulnerabilities by Generat-
ing Test Patterns,” Network-Based Information Systems (NBIS),
2010 13th International Conference on, pp. 469,474, Sep. 14-16,
2010.*

(Continued)

Primary Examiner — Satish Rampuria
(74) Attorney, Agent, or Firm — Kramer & Amado, P.C.

(57) ABSTRACT

Various exemplary embodiments relate to a method and
related network node including one or more of the following:
determining, by the session establishment node, that a session
should be established for the developer; transmitting, to a
sandbox server, an instruction to establish a sandbox for the
session; transmitting to the sandbox server, an identification
of'an emulator associated with the session; and notifying the
developer when the sandbox is available for use. Various
exemplary embodiments relate to a method and related net-
work node including one or more of the following: receiving,
by the sandbox server, an instruction to establish a sandbox;
establishing the sandbox on the sandbox server; and instan-
tiating a device emulator on the sandbox.

19 Claims, 6 Drawing Sheets

805

Receive Sandbox
Establishment
Request

Instantiate
Emulators on
Sandbox

US 9,244,816 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0208748 Al
2006/0199165 Al*

11/2003 Levin et al.
9/2006 Crowhurst etal. 434/350

2008/0234999 Al* 9/2008 Cohenetal. 703/26
2009/0259993 Al* 10/2009 Kondurietal. . 717/127
2012/0180029 Al* 7/2012 Hilletal. 717/135
2012/0300649 Al* 11/2012 Parmaretal. ... 370/252

OTHER PUBLICATIONS

Yoshioka, K.; Hosobuchi, Y.; Orii, T.; Matsumoto, T., “Vulnerability
in Public Malware Sandbox Analysis Systems,” Applications and the
Internet (SAINT), 2010 10th IEEE/IPSJ International Symposium
on, pp. 265,268, Jul. 19-23,2010.*

Zhen Li; Jun-Feng Tian; Feng-Xian Wang, “Sandbox System Based
on Role and Virtualization,” Information Engineering and Electronic
Commerce, 2009. IEEC ’09. International Symposium on, pp.
342,346, May 16-17, 2009.*

Cloud Computing, Wikipedia, 2014, 1-23.

Gama, et al., “A self-healing component sandbox for untrustworthy
third party code execution”, Springer-Verlag Berlin Heidelberg,
2010, 130-149.

Ronny Mandal, “Towards Safe Mutation Testing in a Sandbox Envi-
ronment”, University of OSLO Department of Informatics, May 2,
2011, pp. 1-85.

Stephen A. Ridley, “Escaping the Sandbox”, SyScan-EuSecWest-
ReCon, Jul. 15, 2010, pp. 1-85.

* cited by examiner

US 9,244,816 B2

Sheet 1 of 6

Jan. 26, 2016

U.S. Patent

9PON JuBWIYsSI|qe)sT UoISSag

ogl

I

\/) 0SL
<N

aolAe(Jadojens(

1

3IOMJN Ejeq 1xoed

091 0L1
1] %

4

Jansg Xogpues

/oo_

[|

0cl1

US 9,244,816 B2

Sheet 2 of 6

Jan. 26, 2016

U.S. Patent

¢ IId

sJadojonaq

<7\

S¥¢ ~ INO xoqgpueg

> %S 6z2

——

N9
€ Buynpayog

Jajlonuo) uoisseS Janiasg Bulnpaydg

IN Xogpues | - . . | Z xogpues | | N iojeinw3 | Joyeinuig

N N

)) R R

0LC 09¢ < L <L
1414 <S¢

| Xogpues
)
Janeg xoqpues 06¢
)
4

A\ A\
<R[k
9¢T ¥€2
SPON Juswiysi|ge)s3 uoIssag
)
051
«/SN

U.S. Patent Jan. 26, 2016 Sheet 3 of 6 US 9,244,816 B2

300
N

355
— D;v?.ITgper Testing Tool Emulator
otrer Storage Storage
320 340
§ | §
Session Session Providonng | —
Scheduler Schedule Modul g
Storage odule
310 335
§ §
Sandbox
Developer Establishment
Interface Module
330 Sandbox Server | |
— Network Interface ~~ 305 Interface

FIG. 3
400\
420
425~ I\Sﬁaarrl]c;t;g): Sandboxes
T
v
_| Sandbox Sandbox Developer
410 Creator Definition Interface 435
Storage
Session 415
405~ Establishment
Node Interface Network Interface "\430

FIG. 4

US 9,244,816 B2

Sheet 4 of 6

Jan. 26, 2016

U.S. Patent

G 914

yeig

0¢9

GZ9 ~~ UOEOION UINjoy

9|NPaYdS 0) UoIssaS PPy

A

{OIGE[leAY

029

ON J0|S Bwi|
9 914 Gl9
9INPaYYs 0} 1sanbay anoey ~~019
ue) —_
L~ (GG
G - {d%0 ‘8X0 ‘pX0 ‘EX X 20Lazixo asz/xo
{4%0 '8%0 ¥X0 '€X0} {34%0} Nd 0L - Nd 0021 Lmobe
T¥G {6X0 ‘9x0} {€0%0 ‘96x0} 0lp443%0 35EVX0
98G | {J%0 ‘9x0 ‘wx0} {vix0} LYEG5PX0 SPLIX0
¥£6 ~A {ex0} {o1x0 ‘aaxo ‘34x0} ¥G3¥9./%0 Gazexo Wd 00:ZL - NV 00:LL |~~0¢G
2€G ~ {d¥0 '8%0 ¥X0 -€X0} {aaxo} 201azixo L43pX0
sq| looL sq Jojenw3 altesn Q| uoisseg 1015 awi]
\gzg 026 \G|g \01g \.G0g 00S

U.S. Patent Jan. 26, 2016 Sheet 5 of 6 US 9,244,816 B2

700 800
705~ Stat) (Stat)}~805
\ 2
—1 Receive Sandbox
710~ Retrieve Explnng Establishment |~810
Session Request
A 4
P 815
715 Request Termination .
of Sandbox Available NO
Resource?
720 820
Last Expiring y §
ion?
Session Add Sandbox Reject Request
YES Definition
"\ 825
\ 4 A 4
725~ Retrieve New Session Establish New
830
Sandbox
730 Request Establishment - y
of Sandbox Receive Emulators |~ 835
\] A 4
735 Upload Emulators Instantiate
to Sandbox Emulatorson |~ 840
Sandbox
4
Upload Tools to L
740~
Sandbox Receive Tools |-~ 845
\ 4 A 4
745~ Send URL to User Instantiate Tools
-~ 850
on Sandbox
750
Last New y
Session? (Stop)}~855
FIG. 8

755

FIG. 7

U.S. Patent Jan. 26, 2016 Sheet 6 of 6 US 9,244,816 B2

{ Stat)}~905
900

A
Receive Access
Request

~~910

\ 4

Identify Requested
Sandbox

~~915

920
NO

Sandbox
Exists?

YES

A 4

925 -~ Return Error

Authenticate User |-~ 930

YES QZrO

Install Program on
Selected Emulator

960
Perform Emulator Tool NO
955 Function Command?
975
 J S
¥ 965~ Execute Tool Other
Return Emulator | 945 | Processing
Display & Results
970~ Return Tool
Results
 J

(Stop)~980
FIG. 9

US 9,244,816 B2

1
APPLICATION TESTING USING SANDBOXES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority as a continuation to issued
U.S. Pat. No. 8,799,862, corresponding to U.S. patent appli-
cation Ser. No. 13/167,834, filed on Jun. 24, 2011, the entire
disclosure of which is hereby incorporated herein by refer-
ence for all purposes.

TECHNICAL FIELD

Various exemplary embodiments disclosed herein relate
generally to application development.

BACKGROUND

As aresult of the widespread adoption of smart-phones, the
number of different platforms available for execution of
applications has exploded. In addition to the relatively few
operating systems available for other devices such as personal
computers, application developers must now consider a num-
ber of new mobile operating systems (such as Windows™
Mobile™, Google™ Android™ Apple™ iPhone™, and
Nokia™ Symbian™ operating systems) in order to ensure
broad operability. Adding to this dilemma, equipment and
service providers often add to or otherwise alter open oper-
ating systems such as Google™ Android™, thereby requiring
application developers to take numerous versions of the same
operating system into account when testing an application.

In many cases, the only way to ensure that an application
will operate correctly on these various devices is to test the
application on each such device or using an associated soft-
ware development kit (SDK). This process, however, is time
consuming and requires the developer to obtain the devices or
SDKs to be evaluated before testing and debugging may
commence.

SUMMARY

Various exemplary embodiments relate to a method per-
formed by a session establishment node for providing a sand-
box to a developer, the method including one or more of the
following: determining, by the session establishment node,
that a session should be established for the developer; trans-
mitting, to a sandbox server, an instruction to establish a
sandbox for the session; transmitting to the sandbox server, an
identification of an emulator associated with the session; and
notifying the developer when the sandbox is available for use.

Various embodiments are described wherein the step of
transmitting to the sandbox server, an identification of an
emulator associated with the session comprises transmitting
the device emulator to the sandbox server.

Various embodiments additionally include one or more of
the following: transmitting a second device emulator to the
sandbox server, wherein the device emulator and the second
device emulator emulate different types of devices; and trans-
mitting a test tool associated with the session to the sandbox
server.

Various embodiments are described wherein the step of
determining that a session should be established for the devel-
oper includes one or more of the following: receiving, by the
session establishment node from the developer, a request for
a session; scheduling the establishment of the session in asso-

10

15

25

40

45

55

2

ciation with a time slot; and determining, based on a current
time and the time slot, that the session should be established
for the developer.

Various embodiments are described wherein the sandbox
server is associated with a cloud computing architecture,
wherein the step of notifying the developer that the sandbox is
available for use includes transmitting a uniform resource
locator (URL) for accessing the sandbox, and/or wherein the
session establishment node and the cloud server are different
physical devices.

Various exemplary embodiments relate to a method per-
formed by a sandbox server for providing a sandbox to a
developer, the method including one or more of the following:
receiving, by the sandbox server, an instruction to establish a
sandbox; establishing the sandbox on the sandbox server; and
instantiating a device emulator on the sandbox.

Various alternative embodiments additionally include one
or more of the following: instantiating a second device emu-
lator on the sandbox, wherein the device emulator and the
second device emulator emulate different types of devices;
instantiating a test tool on the sandbox; receiving application
code from the developer; configuring the device emulator to
run the application code; managing the distribution of pro-
cessing resources among a plurality of sandboxes; and pro-
viding a user interface to the developer, wherein the user
interface enables the developer to: transmit commands to the
device emulator, and transmit commands to at least one test
tool.

Various embodiments are described wherein the step of
establishing the sandbox includes reserving cloud resources
for use by the developer.

Various exemplary embodiments relate to a method per-
formed by a developer device for testing an application, the
method including one or more of the following: transmitting,
to a session establishment node, a request for a sandbox;
receiving a notification that the developer device may access
the sandbox at a sandbox server; and transmitting, to the
sandbox server, a request to access the sandbox.

Various embodiments are described wherein the session
establishment node and the sandbox server are different
physical devices, wherein the request for a sandbox includes
an indication of at least one requested device emulator and at
least one requested testing tool, and/or wherein the step of
transmitting a request to access the sandbox includes access-
ing a web user interface.

Various alternative embodiments additionally include
transmitting application code to the sandbox server.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to better understand various exemplary embodi-
ments, reference is made to the accompanying drawings,
wherein:

FIG. 1 illustrates an exemplary network for developing and
testing applications;

FIG. 2 illustrates a function-level diagram of an exemplary
system for testing applications;

FIG. 3 illustrates an exemplary session establishment
node;

FIG. 4 illustrates an exemplary sandbox server;

FIG. 5 illustrates an exemplary data arrangement for stor-
ing a session schedule;

FIG. 6 illustrates an exemplary method for scheduling a
session;

FIG. 7 illustrates an exemplary method for managing
scheduled sessions;

US 9,244,816 B2

3

FIG. 8 illustrates an exemplary method for establishing a
sandbox; and

FIG. 9 illustrates an exemplary method for providing
access to a sandbox.

To facilitate understanding, identical reference numerals
have been used to designate elements having substantially the
same or similar structure and/or substantially the same or
similar function.

DETAILED DESCRIPTION

In view of the foregoing, it would be desirable to provide a
method for testing an application on multiple types of devices
from a single interface using an aggregated tool set. It would
further be desirable to perform such testing in a hosted envi-
ronment. Accordingly, various embodiments enable an all-in-
one testing environment to be established for a developer on
a hosted sandbox. As used herein, the term “sandbox” will be
understood to refer to a testing environment having dedicated
resources for use in testing code.

Referring now to the drawings, there are disclosed broad
aspects of various exemplary embodiments.

FIG. 1 illustrates an exemplary network 100 for developing
and testing applications. Exemplary network may include a
packet data network 110 as well as a number of devices
attached to packet data network, such as developer device
120, session establishment node 130, and sandbox server 140.

Packet data network may be a device or group of devices
adapted to provide communication between devices such as
developer device 120, session establishment node 130, and
sandbox server 140. Accordingly, packet data network may
include a number of routers and/or switches for forwarding
packets of to appropriate destinations. In various embodi-
ments, packet data network is the Internet.

Developer device 120 may be any device used by a devel-
oper to communicate with session establishment node 130
and/or sandbox server 140. Accordingly, developer device
may be a personal or laptop computer, server, tablet, wireless
email device, cell phone, smart phone, television set-top box,
or any other device capable of communicating with other
devices via packet data network 130. Developer device 120
may additionally include software for enabling various forms
of communication such as a web browser and/or email soft-
ware.

Session establishment node 130 may be any device adapted
to establish sandbox sessions at sandbox server 140 on behalf
of developers. Accordingly, session establishment node 130
may be a personal or laptop computer, server, tablet, wireless
email device, cell phone, smart phone, television set-top box,
or any other device capable of receiving and fulfilling
requests for sandbox sessions. In various embodiments, ses-
sion establishment node 130 may be adapted to receive a
request for a session from developer device 120 and subse-
quently instruct sandbox server 140 to establish a sandbox
session. Session establishment node 130 may perform addi-
tional functions such as session scheduling, installation of
device emulators on sandbox server 140, and/or installation
of'test tools on sandbox server 140. The detailed operation of
session establishment node 130 will be described in greater
detail, below.

Sandbox server 140 may be any device or group of devices
for providing one or more sandboxes for various developers
to use in testing applications. Accordingly, sandbox server
may include a personal or laptop computer, server, tablet,
wireless email device, cell phone, smart phone, television
set-top box, and/or any other device capable of supporting
and providing access to one or more sandbox. In various

10

20

30

40

45

50

55

60

4

embodiments, upon instruction by session establishment
node 130, sandbox server 140 may establish a new sandbox.
Sandbox server may further instantiate various device emu-
lators and testing tools within the sandbox, as will be
described in further detail below. Sandbox server 140 may
also provide developer device 120 with access to one or more
such sandboxes. Such access may include installation of code
on device emulators, other manipulation of device emulators,
and/or utilization of testing tools.

In various embodiments, sandbox server may be or may
otherwise include cloud-computing resources for supporting
various sandboxes. Accordingly, sandbox server 140 may be
a cloud-computing system such as, for example, Amazon
Elastic Compute Cloud (EC2). The detailed operation of
sandbox server 140 will be described in greater detail, below.

Note that in various embodiments, session establishment
node 130 and sandbox server 140 may be located on the same
premises. In such embodiments, session establishment node
130 and sandbox server 140 may communicate in a more
direct manner that does not utilize packet data 110. In various
embodiments, session establishment node 130 and sandbox
server 140 may be the same device that performs both sets of
functions.

Having described the components of exemplary network
100, a brief summary of the operation of network 100 will be
provided. It should be apparent that the following description
is intended to provide an overview of the operation of network
100 and is therefore a simplification in some respects. The
detailed operation of network 100 will be described in further
detail below in connection with FIGS. 2-9.

According to various exemplary embodiments, developer
device 120 transmits a request message 150 to session estab-
lishment node 130. In various embodiments, request message
150 may be a hypertext transfer protocol secure (HTTPS)
message. This request message may indicate that a developer
would like to use a sandbox from 2:00-3:00 PM and that the
sandbox should have an emulator of an HTC Evo mobile
phone and a bandwidth performance testing tool. In response,
session establishment node 130 schedules the requested ses-
sion for the 2:00-3:00 PM time slot. Subsequently, when the
current time is approximately 2:00 PM, session establishment
node 130 may send an instruction 160 to sandbox server 140
to establish a sandbox for the developer. Session establish-
ment node 130 may also send the requested emulator and tool
to sandbox server 140. Upon receiving the emulator and tool,
sandbox server instantiates the two objects on the newly
established sandbox. Thereafter, developer device 120 may
communicate 170 with sandbox server 140 for access to the
sandbox. For example, developer device 120 may upload
application code, which sandbox server may install on the
emulator and subsequently use the testing tool to evaluate the
bandwidth performance of the HTC Evo emulator while run-
ning the uploaded application.

FIG. 2 illustrates a function-level diagram of an exemplary
system 200 for testing applications. Exemplary system 200
may include three entities: developers 225, session establish-
ment node 130, and sandbox server 140. As previously noted,
in various alternative embodiments, the entities illustrated in
system 200 may be collocated or may be the same physical
device. For example, session establishment node 130 and
sandbox server 140 may be the same device.

Developers 225 may include one or more application
developers. Developers 225 may access the other entities
using one or more developer devices such as developer device
120. Developers 225 may create application software for use

US 9,244,816 B2

5

onvarious devices, either locally or in connection with an API
provided by session establishment node 130 or some other
third party node (not shown).

Session establishment node 130 may include a scheduling
graphical user interface (GUI) 232, scheduling server 234,
and session controller 236, each of which may include hard-
ware and/or executable instructions stored on a machine-
readable medium. In various embodiments, scheduling GUI
232, scheduling server 234, and/or session controller 236
may share components. For example, session establishment
node 130 may include a microprocessor that executes instruc-
tions associated with each of scheduling GUT 232, scheduling
server 234, and/or session controller 236. Accordingly, this
microprocessor may be included in each of these compo-
nents.

When developers 225 wish to request the use of a sandbox,
they may access scheduling GUI 232. In various exemplary
embodiments, scheduling GUI 232 may be a web page and
developers 225 may access scheduling GUI 232 via the World
Wide Web. Scheduling GUI 232 may present developers 225
with a list of currently scheduled sessions and/or a list of
currently available time slots for sessions. Using this infor-
mation, developers 225 may request a particular time slot for
establishment of a sandbox session. Scheduling GUI 232 may
pass this request to scheduling server 234, which may store
the scheduled session information for later use. In various
alternative embodiments, developers 225 may not be given an
opportunity to request a specific time and, instead, an avail-
able time slot may be assigned to the request by scheduling
server 234.

In various embodiments, scheduling GUI 232 may present
a number of additional options for a scheduled session. For
example, scheduling GUI 232 may present a list of available
device emulators and/or testing tools. Developers 225 may
select one or more of such emulators and/or tools for use
during the requested session. Accordingly, scheduling GUI
232 may pass this information to scheduling server 234,
which may store this additional information for later use.

Scheduling GUI 232, or some other component of session
establishment node 130, may additionally notify developers
225 of how to access the requested sandbox. For example,
upon scheduling a session, scheduling GUI 232 may display
the scheduled time slot and a URL for accessing the sandbox
upon establishment. Alternatively, this information may be
sent to developers 225 in an email or short message service
(SMS) message. Further, this information may be conveyed
immediately upon scheduling the session, at a predetermined
time period prior to session establishment, or after actual
establishment of the session.

Scheduling server 234 may be responsible for maintaining
a session schedule and notifying session controller 236 when
sessions should be established and terminated. Scheduling
server 234 may maintain a schedule of various sessions for
different time slots, as described above in connection with
scheduling GUI 232. Periodically, scheduling server 234 may
assess this schedule in light of the current time to determine
whether any sessions are expiring. For each expiring session,
scheduling server may indicate to session controller 236 that
the particular session should be torn down and associated
temporary data should be cleaned up such that the system
resources are ready for reassignment.

Scheduling server 234 may additionally determine periodi-
cally, based on the schedule and current time, whether any
scheduled sessions should be established. If so, scheduling
server may instruct session controller 236 to establish a new
session. Scheduling server 234 may further indicate to ses-

15

35

40

45

50

55

6

sion controller any options, such as emulators and/or tools,
that are to be included in the session.

Session controller 236 may be responsible for communi-
cating with sandbox server 140 to terminate, establish, and
configure sandboxes. Accordingly, session controller 236
may include an application programming interface for con-
trolling sandbox server. Upon receiving an instruction from
scheduling server 234 to terminate a session, session control-
ler may identify one or more sandboxes associated with the
session and transmit a command to sandbox server 140 to
terminate those sandboxes. Likewise, upon receiving an
instruction from scheduling server 234 to establish a new
session, scheduling server may determine various establish-
ment parameters such as, for example, an amount of memory
or share of processing power, for at least one new sandbox and
transmit an instruction to sandbox server 140 to establish the
new sandboxes according the establishment parameters. In
various embodiments, session controller 236 or sandbox
server 140 may send a notification to developers at this time to
indicate that the session has been established.

In various exemplary embodiments wherein scheduling
server 234 further indicates one or more tools or emulators to
be associated with a session, session controller 236 may
locate any sets of machine-executable instructions defining or
otherwise associated with the identified tools and/or emula-
tors. Session controller 236 may then transmit the located
machine-executable instructions to sandbox server 140 for
instantiation in the new sandbox.

Sandbox server 140 may support multiple sandboxes 250,
260, 270 for use by various developers 225. Each sandbox
may be uniquely associated with one or more portions of
memory in sandbox server 140 so as to isolate any code
executing within one sandbox from all other code on the
system. Further, code within such portions of memory may be
prevented from accessing any other portions of memory not
associated with the sandbox. These sandboxes 250, 260, 270
may also share processing time on one or more processors of
sandbox server 140. For example, each sandbox may receive
an equal share of processing time in a round robin manner.
Alternatively, sandboxes 250, 260, 270 may each be config-
ured to receive a different share of processing time. For
example, sandbox 1 250 may receive twice as much process-
ing time as the other sandboxes 260, 270. Various additional
methods of dividing the total processing resources available
between sandboxes 250, 260, 270 will be apparent to those of
skill in the art.

Sandboxes 250, 260, 270 may also include one or more
device emulators. As an example, sandbox 1 250 includes
device emulators 252, 254. Device emulators 252, 254 may
each emulate a particular device. For example, Emulator 1
252 may emulate an HTC Evo mobile phone, while emulator
N 254 may emulate an Apple iPhone. Accordingly, such
emulators may include an operating system and/or code
designed to simulate various hardware features of those
devices. Various methods for implementing such features will
be apparent to those of skill in the art.

Likewise, each sandbox 250, 260, 270 may similarly
include one or more testing tools (not shown). Such testing
tools may include machine-executable instructions adapted
to perform various tests and simulate various conditions. For
example, testing tools may be defined to monitor bandwidth
performance, processing latency, network load, and/or to
execute user-defined test scripts. Various other tools useful
for testing application code will be apparent to those of skill
in the art.

Sandbox server 140 may additionally include a sandbox
GUI 245 for providing an interface between developers 225

US 9,244,816 B2

7

and sandboxes 250, 260, 270. In various exemplary embodi-
ments, sandbox GUI 245 may be a web page and developers
225 may access sandbox GUI 245 via the World Wide Web.
For each developer 225 that accesses sandbox GUI 245, sand-
box GUI 245 may identity a sandbox 250, 260, 270 associated
with the developer 225 and provide access to that sandbox
250, 260, 270. For example, sandbox GUI 245 may receive a
session or sandbox identifier in the requested URL or input by
developer 225 in a webpage requesting such identifier. After
identifying the appropriate sandbox 250, 260, 270, sandbox
GUI 245 may present developers 225 with access to the
emulators and tools running on that sandbox. Sandbox GUI
245 may further allow developers to upload and install appli-
cation code on various emulators within the sandbox.

FIG. 3 illustrates an exemplary session establishment node
300. Session establishment node 300 may correspond to ses-
sion establishment node 130 and/or sandbox server 140 of
FIGS. 1-2, or various portions thereof. Session establishment
node 300 may include network interface 305, developer inter-
face 310, account storage 315, session scheduler 320, session
schedule storage 325, sandbox server interface 330, sandbox
establishment module 335, resource provisioning module
340, emulator storage 345, testing tool storage 350, and
developer notifier 355.

Network interface 305 may be an interface comprising
hardware and/or executable instructions encoded on a
machine-readable storage medium configured to communi-
cate with at least one other network node. For example, net-
work interface 305 may communicate with various developer
devices such as developer device 120. Accordingly, network
interface 305 may include one or more Ethernet interfaces for
communication via a packet data network such as the Inter-
net.

Developer interface 310 may include hardware and/or
executable instructions on a machine-readable storage
medium configured to provide a user interface to developers
for requesting test sessions. In various embodiments, devel-
oper interface 310 may include a web server and one or more
web pages. Developer interface 310 may first require that a
developer provide authentication credentials prior to sched-
uling a session. For example, in various embodiments, devel-
opers may be required to maintain an account and/or pay a
subscription fee for use of sandboxes and/or other service
provided by session establishment node 300 or related
devices. Upon receiving credentials, such as a user name and
password, developer may read the records stored in account
storage 315 to determine whether the credentials match a
known account and/or whether the account is entitled to
schedule a new session. In various embodiments, an account
may not be entitled to schedule a new session if the account
subscription does not include that service, if the maximum
number of sessions for a particular time period has been
previously reached, or if the maximum number of concurrent
sessions for the account has been met for a particular time
slot.

Developer interface 310 may be configured to display a
schedule of sessions and/or open time slots. Using this dis-
play, an authenticated developer may be able to select a time
slot for the requested session. The developer may also be able
to select various emulators and tools to be included in the
session, as previously described.

Account storage 315 may be any machine-readable
medium capable of storing data related to developer accounts.
Accordingly, account storage 315 may include a machine-
readable storage medium such as read-only memory (ROM),
random-access memory (RAM), magnetic disk storage
media, optical storage media, flash-memory devices, and/or

20

30

40

45

55

8

similar storage media. Account storage 315 may store a num-
ber of account records including various information such as
user names, passwords, maximum numbers of sandboxes,
email addresses, associated parent accounts, etc.

Session scheduler 320 may include hardware and/or
executable instructions on a machine-readable storage
medium configured to report scheduled sessions and open
time slots to developer interface 310 for the purpose of con-
veying this information to developers. Session scheduler 320
may further be configured to receive and process requested
session information. For example, upon receiving data defin-
ing a requested session from developer interface 310, session
scheduler 320 may read session schedule storage 325 to deter-
mine whether the request may be fulfilled. For example, if
there is no available slot for the requested time, session sched-
uler 320 may return an error to developer interface 310. If the
session can be scheduled, session scheduler may create a new
record represented the requested session and store the record
in session schedule storage 325 for future use.

Session schedule storage 325 may be any machine-read-
able medium capable of storing data related to scheduled
sessions. Accordingly, session schedule storage 325 may
include a machine-readable storage medium such as read-
only memory (ROM), random-access memory (RAM), mag-
netic disk storage media, optical storage media, flash-
memory devices, and/or similar storage media. In various
embodiments, session schedule storage 325 may be the same
component as account storage 315. Session schedule storage
325 may store anumber of scheduled session records defining
sessions to be established in the future. An exemplary data
arrangement for storing such records will be described in
greater detail below with respect to FIG. 5.

Sandbox server interface 330 may be an interface compris-
ing hardware and/or executable instructions encoded on a
machine-readable storage medium configured to communi-
cate with at least one sandbox server such as sandbox server
140. In various embodiments, sandbox server interface 330
may communicate with sandbox servers via a packet data
network such as a local area network (LAN), wide area net-
work (WAN), or the Internet. Accordingly, sandbox server
interface 330 may include one or more Ethernet interfaces. In
various embodiments, sandbox server interface 330 may be
the same component as network interface 305.

Sandbox establishment module 335 may include hardware
and/or executable instructions on a machine-readable storage
medium configured to communicate via sandbox server inter-
face 330 to establish sandboxes as appropriate. In various
embodiments, sandbox establishment module 335 may peri-
odically evaluate the data stored in session schedule storage
325 to determine whether any new sandboxes should be
established. For example, sandbox establishment module 335
may compare a current time to various time slots to determine
whether a particular session should be activated. Upon deter-
mining that a session should be activated, sandbox establish-
ment module 335 may transmit an instruction via sandbox
server interface 330 to establish a new sandbox. Sandbox
establishment module 335 may also transmit information
related to one or more accounts that will access the sandbox
such as, for example, authentication information stored in
account storage 315. Sandbox establishment module 335
may then wait to receive a confirmation message via sandbox
server interface 330, indicating whether the sandbox was
successfully established. Once the session is established,
sandbox establishment module may then indicate to resource
provisioning module 340 that the sandbox may now be con-
figured.

US 9,244,816 B2

9

Resource provisioning module 340 may include hardware
and/or executable instructions on a machine-readable storage
medium configured to further configure an established sand-
box based on various options requested by a developer. For
example, using the scheduled session record, resource provi-
sioning module 340 may identify one or more emulators
and/or testing tools. Subsequently, resource provisioning
module may locate code defining any requested emulators or
tools in emulator storage 345 or testing tool storage 350,
respectively. Resource provisioning module 340 may then
transmit such code via sandbox server interface 330 for
instantiation within the newly established sandbox. In various
alternative embodiments, the code defining various emulators
and/or tools may be stored elsewhere such as, for example, on
a sandbox server. Accordingly, resource provisioning module
340 or sandbox establishment module 335 may simply trans-
mit an identifier for the requested emulators or tools.

Emulator storage 345 may be any machine-readable
medium capable of storing code defining various device emu-
lators. Accordingly, emulator storage 345 may include a
machine-readable storage medium such as read-only memory
(ROM), random-access memory (RAM), magnetic disk stor-
age media, optical storage media, flash-memory devices, and/
or similar storage media. In various embodiments, emulator
storage 345 may be the same component as account storage
315 and/or session schedule storage 325. Emulator storage
345 may store code defining device emulators in association
with respective unique emulator identifiers.

Testing tool storage 350 may be any machine-readable
medium capable of storing code defining various testing
tools. Accordingly, testing tool storage 350 may include a
machine-readable storage medium such as read-only memory
(ROM), random-access memory (RAM), magnetic disk stor-
age media, optical storage media, flash-memory devices, and/
or similar storage media. In various embodiments, testing tool
storage 350 may be the same component as account storage
315, session schedule storage 325, and/or emulator storage
345. Emulator storage 345 may store code defining testing
tools in association with respective unique tool identifiers.

Developer notifier 355 may include hardware and/or
executable instructions on a machine-readable storage
medium configured to transmit a notification to a developer
when a sandbox is ready for use. Accordingly, upon receiving
an indication from sandbox establishment module 335 or
resource provisioning module 340 that a sandbox has been
established and/or configured, developer notifier may trans-
mit a notification, such as an email or SMS message, to the
developer. Alternatively, developer notifier 355 may monitor
session schedule storage 325 and transmit such an indication
a predetermined time prior to establishment of the sandbox.
For example, developer notifier 255 may send a reminder
email to a developer fifteen minutes before the developer’s
scheduled time slot opens. Whenever developer notifier 355
transmits such an indication, developer notifier 355 may also
include an indication of how to access the sandbox. For
example, developer notifier 355 may include a unique sand-
box identifier and/or a unique URL for accessing the particu-
lar sandbox. Using this information, a developer may access
the scheduled sandbox at an appropriate time.

FIG. 4 illustrates an exemplary sandbox server 400. Sand-
box server 400 may correspond to session establishment node
130 and/or sandbox server 140 of FIGS. 1-2, or various por-
tions thereof. Sandbox server 400 may include session estab-
lishment node interface 405, sandbox creator 410, sandbox
definition storage 415, sandboxes 420, sandbox manager 425,
network interface 430, and developer interface 435.

10

15

20

25

30

35

40

45

55

60

65

10

Session establishment node interface 405 may be an inter-
face comprising hardware and/or executable instructions
encoded on a machine-readable storage medium configured
to communicate with at least one session establishment node
such as session establishment node 130. In various embodi-
ments, session establishment node interface 405 may com-
municate with sandbox servers via a packet data network such
as the LAN, WAN; or the Internet. Accordingly, session
establishment node interface 405 may include one or more
Ethernet interfaces.

Sandbox creator 410 may include hardware and/or execut-
able instructions on a machine-readable storage medium con-
figured to receive instructions to create sandboxes via session
establishment node interface 504 and to subsequently create
such requested sandboxes. In particular, upon receiving a
request for a sandbox, sandbox creator 410 may update sand-
box definition storage 415 to include a record defining the
new sandbox. This record may include information such as a
session identifier, emulator identifiers, tool identifiers, and/or
developer authentication information. Sandbox creator 410
may further reserve various system resources to create the
new sandbox 420. For example, sandbox creator 410 may
reserve a portion of memory and/or cloud resources to sup-
port the new sandbox 420.

Sandbox definition storage 415 may be any machine-read-
able medium capable of storing code defining various device
emulators. Accordingly, sandbox definition storage 415 may
include a machine-readable storage medium such as read-
only memory (ROM), random-access memory (RAM), mag-
netic disk storage media, optical storage media, flash-
memory devices, and/or similar storage media. Sandbox
definition storage 415 may store records for tracking the
sandboxes 420 established on sandbox server 400.

Sandboxes 420 may include hardware and/or executable
instructions on a machine-readable storage medium config-
ured to provide isolated environments for testing application
code. Accordingly, sandboxes 420 may each constitute an
isolated portion of memory and may each be provided with a
share of processor cycles available in the system. In various
embodiments, sandboxes 420 may be resident in or otherwise
supported by cloud resources. Sandboxes may further each
include device emulators and/or testing tools.

Sandbox manager 425 may include hardware and/or
executable instructions on a machine-readable storage
medium configured to ensure proper operation of sandboxes
420. For example, sandbox manager 425 may deny any
request to access memory outside of the requesting sandbox.
Sandbox manager 425 may further be responsible for ensur-
ing proper distribution of processor cycles. For example,
sandbox manager 425 may implement a round robin or other
scheduling algorithm for determining which sandbox 420
should be given access to an available processor.

Network interface 430 may be an interface comprising
hardware and/or executable instructions encoded on a
machine-readable storage medium configured to communi-
cate with at least one other network node. For example, net-
work interface 430 may communicate with various developer
devices such as developer device 120. Accordingly, network
interface 430 may include one or more Ethernet interfaces for
communication via a packet data network such as the Inter-
net. In various embodiments, network interface 430 may be
the same component as session establishment node interface
405.

Developer interface 435 may include hardware and/or
executable instructions on a machine-readable storage
medium configured to provide an interface for developers to
communicate with sandboxes 420. In various embodiments,

US 9,244,816 B2

11

developer interface 310 may include a web server and one or
more web pages. Uponreceiving an access request, developer
interface may identify the requested sandbox 420. For
example, developer interface may attempt to match the
requested URL or a portion thereof with a sandbox definition
in sandbox definition storage 415. Developer interface 310
may require that a developer provide authentication creden-
tials prior to accessing the sandbox. Again, developer inter-
face 435 may validate this credential information against data
in the associated sandbox definition.

Once the developer has been properly authenticated, devel-
oper interface 435 may provide access to the appropriate
sandbox 420. In various embodiments, developer interface
435 may allow a developer to upload application code and
subsequently install such code on any device emulators
instantiated in the sandbox. Developer interface 435 may
further allow a developer to manipulate device emulators. For
example, developer interface 435 may display a “screen” of
the device emulator and allow the developerto “push” buttons
and navigate the device menus. Developer interface 435 may
also provide access to any instantiated tools within the sand-
box 420. Various additional features of developer interface
435 for facilitating application testing will be apparent to
those of skill in the art.

FIG. 5 illustrates an exemplary data arrangement 500 for
storing a session schedule. Data arrangement 500 may be a
table in a database or cache such as session schedule storage
325. Alternatively, data arrangement 500 may be a series of
linked lists, an array, or a similar data structure. Thus, it
should be apparent that data arrangement 500 is an abstrac-
tion of the underlying data; any data structure suitable for
storage of this data may be used. Data structure 500 may
include numerous fields such as time slot field 505, session ID
field 510, user ID field 515, emulator IDs field 520. Data
arrangement may include additional fields (not shown) for
storing additional information such as, for example, a sand-
box processor priority and/or an amount of memory to
reserve.

Time slot field 505 may store an indication of a time period
associated with each session. In the illustrated example, each
time slot is one hour long. However, various embodiments
may alternatively or additionally support other time periods
such as, for example, 30 minute or 45 minute periods. Session
1D field 510 may store an identifier for the requested session.
Such identifier may be used to identify a session and/or sand-
box among various components of a sandbox testing system.
User identifier 515 may be a unique identifier indicating a
developer that requested and/or will use a particular session.
Emulator IDs field 520 may store a set of identifiers specify-
ing various device emulators to be instantiated for a particular
session. Likewise, tool IDs field 525 may store a set of iden-
tifiers specifying various testing tools to be instantiated for a
particular session.

As an example, data arrangement 500 illustrates a number
of time slots. Time slot 530 is applicable between 11:00 AM
and 12:00 PM and is associated with scheduled sessions 532,
534, and 536. Time slot 540 is applicable between 12:00 PM
and 1:00 PM and is associated with scheduled sessions 542,
544. Data arrangement 500 may include numerous additional
time slots and scheduled sessions 550.

Exemplary scheduled session 532 has a session ID Ox4EF1
and was requested by user 0x12D102. This session should
include an emulator identified as 0xDD and testing tools
identified as 0x3, 0x4, 0x8, and OxF. As another example,
scheduled session 534 is scheduled for the same time slot and
has a session ID 0x82DS5. This exemplary session was
requested by user 0x764E54 to include one tool, identified as

10

15

20

25

30

35

40

45

50

55

60

65

12

0x3, and three device emulators, identified as OxFE, 0xDD,
and 0x10. It should be noted that, while both scheduled ses-
sions 532 and 534 have requested the use of emulator 0xDD,
these sessions, where possible may have access to two differ-
ent instantiations of the device emulator identified as 0xDD
Likewise, the sessions may also have access to two different
instantiations of the testing tool identified as Ox3. Data
arrangement 500 includes additional examples of scheduled
sessions 536, 542, 544, the meanings of which will be appar-
ent in view of the foregoing.

FIG. 6 illustrates an exemplary method 600 for scheduling
a session. Method 600 may be performed by the components
of session establishment node 300 such as, for example,
developer interface 310 and/or session scheduler 320.

Method 600 may begin in step 605 and proceed to step 610,
where session establishment node 300 receives a request to
schedule a session. Such request may include a requested
time slot, requested device emulators, requested testing tools,
other desired parameters, etc. As previously described, the
information included in a request may be specified and/or
selected by a developer using a web page or other interface.
For example, a developer may specify arequested time slot by
selecting a time slot from a plurality of time slots presented
via a web page as available for session scheduling. Session
establishment node 300 may further authenticate the user
before or after step 610, as described above. After receiving
the request, method 605 may proceed to step 615, where
session establishment node 300 may determine whether the
requested time slot is available by, for example, comparing
the number of sessions currently scheduled during any por-
tion of the requested time slot to a maximum number of
sessions allowable for the developer, for a group to which the
developer belongs, and/or for all developers using the system.
If the time slot is available, session establishment node 300
may add the requested session to a list of scheduled sessions
in step 620 and proceed to end in step 620.

If, however, the requested time slot is not available, method
600 may instead proceed to step 625. In step 625, session
establishment node 300 may return a notification such as an
error message indicating that the requested session could not
be scheduled. Session establishment node 300 may then
allow the developer to request a session for a different time
period. In various alternative embodiments, session establish-
ment node 300 may instead select an alternative time slot for
the session and either automatically schedule the session for
that time slot or propose the alternative time slot to the devel-
oper in step 625. In various alternative embodiments, session
establishment node may provide a develop to select an “ad-
hoc” option when a time slot is immediately available. Upon
selection of such an option, session management node may
schedule the session for the current time slot or otherwise
immediately establish the requested session. Method 600
may then proceed to end in step 625.

FIG. 7 illustrates an exemplary method 700 for managing
scheduled sessions. Method 700 may be performed by the
components of session establishment node 300 such as, for
example, sandbox establishment module 335, resource pro-
visioning module 340, and/or developer notifier 355. Method
700 may be executed periodically such as, for example, every
hour, every fifteen minutes, or whenever at least one time slot
begins and/or ends.

Method 700 may begin in step 705 and proceed to step 710
where session establishment node 300 retrieves an expiring
session. For example, session establishment node 300 may
refer to a session schedule to determine whether any time
windows that were open during the last execution of method
700 are now closed. Session establishment node 300 may

US 9,244,816 B2

13

then retrieve a session associated with one such window.
Session establishment node 300 may then send a message to
a sandbox server requesting that any sandboxes associated
with the session be terminated. Method 700 may then proceed
to step 720 where session establishment node 300 may deter-
mine whether any additional expiring sessions should be
processed. If the current session is not the last expiring ses-
sion, method 700 may loop back to step 710. Otherwise,
method 700 may proceed to step 725. In various alternative
embodiments, a sandbox server may be configured to auto-
matically terminate sandboxes without request by session
establishment node 300. For example, each sandbox may
expire after a predetermined time has elapsed or may be
configured upon establishment with an expiration time. In
such embodiments, method 700 may not include steps 710,
715, 720.

In step 725, session establishment node 300 may retrieve a
new session to establish. For example, session establishment
node 300 may refer to a session schedule to determine
whether any time windows that were closed during the last
execution of method 700 are now open. Upon retrieving such
a session, method 700 may proceed to step 730 where session
establishment node 300 may send a request message to a
sandbox server for the establishment of at least one sandbox
in connection with the session. Next, in step 735, session
establishment node 300 may upload any device emulators
requested for the session to the sandbox server. In various
alternative embodiments, a sandbox server may already store
code associated with one or more device emulators. In such
embodiments, session establishment node 300 may simply
send one or more device emulator identifiers to the sandbox
server in step 735. Method 700 may then proceed to step 740,
where session establishment node 300 may upload one or
more testing tools to the sandbox server. In various alternative
embodiments, a sandbox server may already store code asso-
ciated with one or more testing tools. In such embodiments,
session establishment node 300 may simply send one or more
testing tool identifiers to the sandbox server in step 740.

Next, in step 745, session establishment node 300 may
send a URL or other notification to a developer when the
sandbox is ready. For example, session establishment node
300 may send such a message to the developer upon estab-
lishment upon transmission of the request for establishment
of the session. As another example, session establishment
node may transmit a notification at another time, indicating
when the session will be established. Accordingly, step 745
may be performed at another time or in another method such
as, for example, method 600.

Method 700 may then proceed to step 750, where session
establishment node 300 may determine whether any addi-
tional sessions remain to be established. If the current session
is not the last new session, method 700 may loop back to step
725. Otherwise, method 700 may proceed to end in step 755.

FIG. 8 illustrates an exemplary method 800 for establish-
ing a sandbox. Method 800 may be performed by the com-
ponents of sandbox server 400 such as, for example, sandbox
creator 410 and/or sandboxes 420.

Method 800 may begin in step 805 and proceed to step 810,
where sandbox server 400 may receive a request for the
establishment of a sandbox. For example, sandbox server 400
may receive such a request from a session establishment
entity. Then, in step 815, sandbox server 400 may determine
whether sandbox server 400 has sufficient resources to estab-
lish the requested sandbox. For example, sandbox server 400
may compare an amount of memory requested or necessary
for establishing the sandbox to an amount of free memory
currently available. In various embodiments, sandbox server

10

15

20

25

30

35

40

45

50

55

60

65

14

400 may request additional resources from a cloud computing
system. If there are not enough resources to fulfill the request,
sandbox server 400 may reject the request and respond to the
requesting device with an error message. Method 800 may
then end in step 855.

If, on the other hand, sandbox server 400 determines that
enough resources are available to fulfill the request, method
800 may proceed to step 825. In step 825, sandbox server 400
may add a new definition for the new sandbox to a list of
sandbox definitions, as described in greater detail above. For
example, the sandbox definition may include an indication of
a developer to which the sandbox belongs and an area of
memory where the sandbox will reside. Method 800 may then
proceed to step 830, where sandbox server 400 may establish
the new sandbox in the available system resources. Various
methods for establishing a testing sandbox will be apparent to
those of skill in the art. It should be noted that, in various
embodiments, steps 825 and 830 may be performed in reverse
order. For example, sandbox server 400 may add the sandbox
definition after establishing the sandbox.

Next, in step 835, sandbox server 400 may receive device
emulator code and/or identifiers for device emulators from a
requesting device. Sandbox server 400 may then instantiate
the received emulators within the new sandbox. For example,
sandbox server 400 may install or otherwise store the corre-
sponding device emulator code within the portion of memory
allocated to the sandbox. Sandbox server 400 may also ini-
tiate a process for each such emulator for executing the asso-
ciated code. Likewise, in step 845, sandbox server 400 may
receive testing tool code and/or identifiers for testing tools
from a requesting device. Then, in step 850, sandbox server
800 may instantiate the received tools within the sandbox. For
example, sandbox server 400 may install or otherwise store
the corresponding testing tool code within the portion of
memory allocated to the sandbox. Sandbox server 400 may
also initiate a process for each such tool for executing the
associated code. Method 800 may then end in step 855.

FIG. 9 illustrates an exemplary method 900 for providing
access to a sandbox. Method 900 may be performed by the
components of sandbox server 400 such as, for example,
sandboxes 420, sandbox manager 425, and/or developer
interface 435.

Method 900 may begin in step 905 and proceed to step 910
where sandbox server 400 may receive an access request for
a sandbox. Such request may be, for example, an http(s)
request thatidentifies a particular sandbox and/or user. In step
915, sandbox server 400 may attempt to identify the
requested sandbox by, for example, consulting a list of sand-
box definitions. In step 920, sandbox server 400 may deter-
mine whether the identified sandbox exists. For example,
sandbox server 400 may determine that the sandbox does not
exist if sandbox server 400 could not identify any sandbox in
step 915. If the sandbox does not exist, sandbox server 400
may simply return an error to the requesting device in step
925, and method 900 may proceed to end in step 980.

If, on the other hand, sandbox server 400 is able to identify
an active sandbox, method 900 may proceed from step 920 to
step 930. In step 930, sandbox server 400 may attempt to
authenticate the user. For example, sandbox server 400 may
compare a session identifier, user identifier, and/or password
to data stored in the associated sandbox definition. If the
compared data does not match the sandbox definition, method
900 may simply end. Otherwise, method 900 may proceed to
step 935 where sandbox server 400 determines whether the
access request is a request to upload application code to a
device emulator. If so, sandbox server 400 may proceed to

US 9,244,816 B2

15

receive and install the application code on at least one emu-
lator in the sandbox in step 940. Method 900 may then pro-
ceed to step 945.

If sandbox server 400 determines in step 935 that the
request does not include application code for installation,
method 900 may instead proceed to step 950, where sandbox
server 400 may determine whether the access request
includes a command for a device emulator. If so, method 900
may proceed to step 955, where sandbox server 400 may
perform the specified command on the device emulator. For
example, the access request may specify that a particular
button should be “pressed” on the emulator or that a device
should be “tilted” a specified direction. The sandbox server
may emulate the requested command and method 900 may
proceed to step 945.

In step 945, sandbox server 400 may return an emulator
display and/or any other results of the command. In various
embodiments, this may include returning an html or other
web page displaying an emulated device screen. Such web
page may be operable for transmitting further access requests
to the sandbox server 400. Method 900 may then end in step
980.

In step 950, if the sandbox server 400 determines that the
access request does not include an emulator command,
method 900 may instead proceed to step 960, where sandbox
server 400 may determine whether the access request
includes a tools command. For example, the access request
may request the execution and/or results from a testing tool. If
the access request includes such a command, sandbox server
400 may execute the testing tool in step 965 and return tool
results to the developer in step 970. In various embodiments,
this may include returning an html or other web page display-
ing a testing tool report. Such web page may be operable for
transmitting further access requests to the sandbox server
400. Method 900 may then end in step 980.

It, onthe other hand, sandbox server 400 determines at step
960 that the access request does not include a tool command,
method 900 may instead proceed to step 975. In step 975,
sandbox server 400 may perform other processing in order to
fulfill the access request. For example, such processing may
include changing the parameters of a sandbox, terminating a
sandbox, or saving the current state of a sandbox for future
use. Various additional types of access request useful in test-
ing applications will be apparent to those of skill in the art.
Step 975 may also include presenting a web page to a devel-
oper that may be operable for transmitting further access
requests to the sandbox server 400. Method 900 may then end
in step 980.

It should be apparent from the foregoing description that
various exemplary embodiments of the invention may be
implemented in hardware and/or firmware. Furthermore,
various exemplary embodiments may be implemented as
instructions stored on a machine-readable storage medium,
which may be read and executed by at least one processor to
perform the operations described in detail herein. A machine-
readable storage medium may include any mechanism for
storing information in a form readable by a machine, such as
a personal or laptop computer, a server, or other computing
device. Thus, a tangible and non-transitory machine-readable
storage medium may include read-only memory (ROM), ran-
dom-access memory (RAM), magnetic disk storage media,
optical storage media, flash-memory devices, and similar
storage media.

It should be appreciated by those skilled in the art that any
block diagrams herein represent conceptual views of illustra-
tive circuitry embodying the principles ofthe invention. Simi-
larly, it will be appreciated that any flow charts, flow dia-

15

40

45

50

16

grams, state transition diagrams, pseudo code, and the like
represent various processes which may be substantially rep-
resented in machine readable media and so executed by a
computer or processor, whether or not such computer or
processor is explicitly shown.

Although the various exemplary embodiments have been
described in detail with particular reference to certain exem-
plary aspects thereof, it should be understood that the inven-
tion is capable of other embodiments and its details are
capable of modifications in various obvious respects. As is
readily apparent to those skilled in the art, variations and
modifications can be effected while remaining within the
spirit and scope of the invention. Accordingly, the foregoing
disclosure, description, and figures are for illustrative pur-
poses only and do not in any way limit the invention, which is
defined only by the claims.

What is claimed is:

1. A method performed by a session establishment node for
providing a sandbox to a developer, the method comprising:

determining, by the session establishment node, that a ses-

sion is to be established for the developer, by:
receiving, by the session establishment node from the
developer, a request for a session:
scheduling the establishment of the session in associa-
tion with a time slot; and
based on a current time and the time slot, determining
that the session is to be established for the developer;
transmitting, to a sandbox server, an instruction to establish
a sandbox for the session;
transmitting to the sandbox server, an identification of an
emulator associated with the session, among a plurality
of available emulators; and

notifying the developer of a time when the sandbox is

available for use.

2. The method of claim 1, wherein the step of transmitting
to the sandbox server, an identification of an emulator asso-
ciated with the session comprises transmitting the device
emulator to the sandbox server.

3. The method of claim 2, further comprising transmitting
a second device emulator to the sandbox server, wherein the
device emulator and the second device emulator emulate
different types of devices.

4. The method of claim 1, further comprising transmitting
a test tool associated with the session to the sandbox server.

5. The method of claim 1, wherein the sandbox server is
associated with a cloud computing architecture.

6. The method of claim 1, wherein the step of notifying the
developer that the sandbox is available for use includes trans-
mitting a uniform resource locator (URL) for accessing the
sandbox.

7. The method of claim 1, wherein the session establish-
ment node and the cloud server are different physical devices.

8. A method performed by a sandbox server for providing
a sandbox to a developer, the method comprising:

receiving, by the sandbox server, an instruction to establish

a sandbox after a session establishment node scheduled
the establishment of a session in association with a time
slot, and determined that the session is to be established
for the developer by consideration of a current time and
the time slot;

establishing the sandbox on the sandbox server;

instantiating a device emulator on the sandbox;

receiving, by the sandbox server, an identification for the
device emulator associated with a session established
for the developer, among a plurality of available device
emulators; and

US 9,244,816 B2

17

notifying the developer of a time when the sandbox is

available for use.

9. The method of claim 8, further comprising instantiating
a second device emulator on the sandbox, wherein the device
emulator and the second device emulator emulate different
types of devices.

10. The method of claim 8, further comprising instantiating
a test tool on the sandbox.

11. The method of claim 8, wherein the step of establishing
the sandbox comprises reserving cloud resources for use by
the developer.

12. The method of claim 8, further comprising:

receiving application code from the developer; and

configuring the device emulator to run the application

code.

13. The method of claim 8, further comprising managing
the distribution of processing resources among a plurality of
sandboxes.

14. The method of claim 8, further comprising providing a
user interface to the developer, wherein the user interface
enables the developer to:

transmit commands to the device emulator, and

transmit commands to at least one test tool.

15. A method performed by a developer device for testing
an application, the method comprising:

transmitting, to a session establishment node, a request for

a sandbox;

15

20

25

18

based on the session establishment node scheduling the estab-
lishment of the session in association with a time slot, and
determining that the session is to be established for the devel-
oper by consideration of a current time and the time slot:
receiving a notification that the developer device is to
access the sandbox at a sandbox server, the sandbox
having been associated with an identification for a
device emulator associated with a session established
for the developer, among a plurality of available device
emulators;

receiving notification of a time when the sandbox is avail-

able for use; and

transmitting, to the sandbox server, a request to access the

sandbox.

16. The method of claim 15, wherein the session establish-
ment node and the sandbox server are different physical
devices.

17. The method of claim 15, wherein the request for a
sandbox includes an indication of at least one requested
device emulator and at least one requested testing tool.

18. The method of claim 15, further comprising transmit-
ting application code to the sandbox server.

19. The method of claim 15, wherein the step of transmit-
ting a request to access the sandbox comprises accessing a
web user interface.

